2H NMR Study of Molecular and Electron Spin Dynamics in Paramagnetic ${\rm [Co(H_2O)_6][SiF_6]}$

Takahiro Iijima, Motohiro Mizuno, and Masahiko Suhara

Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920-1192, Japan Reprint requests to Dr. M. M.; E-mail: mizuno@wriron1.s.kanazawa-u.ac.jp

Z. Naturforsch. **55 a,** 173–177 (2000); received August 23, 1999

Presented at the XVth International Symposium on Nuclear Quadrupole Interactions, Leipzig, Germany, July 25 - 30, 1999.

The temperature dependences of 2H NMR spectra and the spin-lattice relaxation time T_1 were measured for $[Co(H_2O)_6][SiF_6]$. The variation of the spectrum above room temperature can be explained by the reorientation of $[Co(H_2O)_6]^{2+}$ about the C_3 axis. The activation energy E_a and the jumping rate at infinite temperature k_0 for the three site jump of $[Co(H_2O)_6]^{2+}$ were obtained as 82 kJmol^{-1} and $2 \times 10^{17} \text{ s}^{-1}$ from the spectral simulation. Below room temperature, the spectral line shape was dominated by the 180° flip of the water molecule. The minimum of T_1 caused by the 180° flip of the water molecule was observed at ca. 260 K. The jumping rate of the 180° flip of the water molecule was estimated from the 2H NMR T_1 and the spectral simulation. $E_a = 38 \text{ kJmol}^{-1}$ and $k_0 = 6 \times 10^{15} \text{ s}^{-1}$ for the 180° flip of the water molecule were obtained from T_1 .

Key words: Phase Transition; ²H NMR; Nuclear Quadrupole Interaction; Paramagnetic Shift; Molecular Dynamics.